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Abstract: in Recent Years, Matrix Exponential Functions Have Been Widely Used in Semi-Linear 
Ordinary Differential Equations and Are Widely Used. Moreover, the Application in Actual 
Production and Life Has Gradually Increased. among Them, Engineering Mechanics, Molecular 
Dynamics, Mechanical Design, Etc. through the Matrix Function with Exponential Properties Can 
Promote Its Application in Actual Production and Provide a Powerful Driving Force for Social and 
Economic Development. Based on This, This Paper Constructs a Block Krylov Subspace, and 
Studies the Validity of Exponential Property Matrix Functions and Vector Products, in Order to 
Provide a Theoretical Reference for the Calculation of Exponential Class Matrix Functions in Daily 
Life. 

1. Introduction 
1.1 Literature Review 

In the thinking about the calculation of the matrix exponential function, Lin Biao expands and 
enriches the matrix exponential functions eA and eAt, and further gives a general calculation 
method to prove the matrix exponential function by using the matrix similarity principle (Lin, 2010). 
In order to clarify the nature of the matrix index, Zheng Xingzhong further studied the Kronecker 
product (and), the Khatri-Rao product (and), and the acy-Singh product (and), and discussed the 
matrix exponential function on this basis. The particularity of transposing (Zheng and Ren, 2011). 
Liu Yuyun et al. In the study of the calculation of matrix exponential function, it is mentioned that 
the matrix exponential functions exp(A) and exp(At) have been widely used in differential 
equations and modern system control. Among them, the integral representation of each derivative in 
the matrix exponential function is the basis of the application of the exponential functions exp(A) 
and exp(At) in actual production. The exponential function exp(A) is obtained mainly by the 
method and skill of the matrix column expansion operation. The first-order directional derivative of 
exp(At) (Liu et al., 2009). Yu Liya pointed out that there are many methods for calculating the 
matrix exponential function, including differential equation method, polynomial method and matrix 
decomposition method. Both methods have certain limitations, both theoretically and 
computationally. Both methods have certain limitations, both theoretically and computationally. 
Therefore, Yu Liya has developed a new method for calculating the matrix exponential function 
from the linear homogeneous homogeneous differential equation and the Hamilton-Kelley theorem. 
This method makes the calculation of the matrix function more practical (Yu, 2010). 

1.2 Research Purposes 
At present, with the extensive use of mechanical design and oceanography in real life, the 

method of index integral method of computational methods has been widely recognized by scholars, 
and has obtained rich research results. After continuous research and daily application, scholars 
have an important role in the mechanical design and oceanographic calculations, and further pointed 
out that the exponential integration method is an effective numerical method for solving semilinear 
differential equations (Chen, 2011). Specifically, the exponential property-like matrix function 
directly solves the efficiency of the exponential integration method by efficiently solving with the 
vector product. At the same time, the specific solution process of ordinary differential equations has 
been the research field of computational direction in data, and many mature algorithms have been 
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formed. Among them, these algorithms have achieved good results in solving non-rigid differential 
equations. The main performance is that implicit integration can effectively overcome the 
inefficiency of the rigid numerical solution method. However, it is difficult to solve the problem, 
and it needs to be solved by means of an exponential class matrix function to reduce the amount of 
calculation. In this context, it is important to study the validity of the matrix exponential function 
and the vector product. 

2. Theoretical Overview 
At present, the study of exponential matrix functions has been widely used in social production 

and has attracted the attention of most scholars. Among them, the algorithm for solving the matrix 
index and vector product has achieved great results in many scholars and a wide range of practical 
applications (Cai et al., 2014). At the same time, for the exponential function with large sparse 
matrix, the Krylov subspace method is generally used to solve the vector product of the matrix 
exponential function. In the specific solution process, the vector product solving method of matrix 
exponential function has been greatly improved, and the standard subspace method has been 
improved and optimized in continuous research and application (Guo, 2011). exponential function 
is optimized to a large extent, the application and research of the subspace method of the matrix 
exponential function Ae b  is still in its infancy, and there is no systematic use and specific 
description. 

Aiming at this situation, this paper constructs a block-based Krylov subspace method to calculate 
the matrix exponential function. Compared with the Krylov subspace algorithm of single vector, the 
block self-space method constructed in this paper shows a big advantage when developing a matrix 
with heavy eigenvalues and close eigenvalues, which can ensure that the eigenvalues are higher. At 
the same time, when calculating the block subspace, it can solve the original reduction original 
problem that cannot be solved by the unidirectional quantum space, and can avoid the unnecessary 
operation steps of the matrix and vector product to a certain extent. At the same time, the block 
subspace can reduce the instability factor in the operation process and ensure the accuracy of the 
calculation results. In the specific calculation process, the block Krylov subspace mainly performs a 
low-dimensional processing on a multi-dimensional matrix A, and then approaches the initial 
problem by a low-order matrix index. In the calculation process, in order to make the calculation 
process more reasonable, the ODEs system is used in the calculation process to construct the block 
Krylov subspace method. 

3. Effective Calculation of Matrix Exponential Function and Vector Product 
3.1 Block Krylov Subspace Method 

To represent a larger order of matrix exponents and vector product forms, the following theorem 
can be used to provide research motivation for the development of Krylov subspace methods, as 
shown below. 
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In formula (1), each variable element takes the following condition 10, p k kl bω − += = , and 
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Let 1t = , then the left side of equation (3) is to solve the problem of equation (1). At this time, 
the solution of the problem (1) can be transformed into a matrix exponential with a larger order and 
a vector product. In this way, the algorithm for calculating the larger-order matrix exponent and the 
vector product can calculate the problem (1). At the same time, some scholars will use the 
relationship between formula (1) and formula (2), using the stage Taylor of exp(A)  to show the 
right end term of approximation formula (3), thus avoiding the operation between a large number of 
matrices, and the matrix inverse operation, This implements a matrix and vector product operation. 

3.2 Forward Error Analysis and Posterior Error Estimation 
Algorithm 1 is first subjected to forward error analysis, followed by reliable a posteriori error 

estimation as a criterion for algorithm termination. 
Solve the block Krylov subspace algorithm: 
Enter: 0 1, , ,... .pA B b b b andt =    

1 1 0b b Ab= +  
(:, 2 : 1)B p + 'S QR Decomposition: 1(:, 2 : 1)B p V R+ =  

1, 2,...for m do=  
Calculate the /Arnoldi Lanczos  Decomposition of 1( , )mk A V  

Form: 1: (:, ) ( )(:, 1), 1, 2,...mH W i E R p i i p= − + =  

Calculation ( 1), t Hm
mp p mu I O e e + =    

Calculation m m oy v u b= +  
end for  
First, forward error analysis. Based on the previous theoretical analysis, the analytical solution of 

the system is assumed to be the formula (4). Among them, y  is an exact solution. 

( ) [ , ] ( 1)mt
m py t V O e e m= +     (4) 

At this point, it is assumed that the matrix 
~

mH  index is completed by any suitable small- and 

medium-scale matrix index algorithm. When the ( )u t  value is obtained, it is brought into the 
formula (4) to obtain the following formula (5), where my  is a numerical solution. 

( ) ( ) [ , ] ( 1)tm
m m my t V u t V O e ep m= = +      (5) 

Subsequently, the formulas (4) and (5) are subtracted correspondingly to obtain the precision 
error of ( )my t . 

( ) ( ) ( )m me t y t y t= −      (6) 
Second, the posterior error estimate. In order to determine whether the approximate solution A 

satisfies the accuracy requirement, it is necessary to establish a reliable backward error estimate as 
the algorithm termination criterion.In order to further solve the initial value problem, the 
expressions of the systematic error ( )mr t  and the error ( )m tε  generated by the approximate 
solution my  are extracted. At the same time, numerical experiments and theoretical analysis show 
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that the error estimates extracted from these expressions can truly reflect the law of error variation. 
The specific formula is as shown in (5). 

1
1 1 1|| , ( 1) ||T

m m m m pe t V H E e mϕ+ += + (5) 

In order to simplify the calculation process, a simple matrix error statistic formula (6) can be 
obtained by replacing the function 1ϕ  with a matrix exponent. 

2
1 1 1|| , ( 1) ||T

m m m m pe t V H mE e mϕ+ += +   (6) 

3.3 Numerical Experiment  

In order to verify the validity of the algorithm and the backward error estimate, it is necessary to 
carry out numerical experiments. The test environment is Windows 7 system, the processor is 
i7-8400, 3.0GHz, 8G memory. The MATLAB software is used to measure the accuracy of the 
algorithm by the relative error formula (7). If not specified, the experimental exact solution is 
calculated by MATLAB's own function ode45. 

my yError
y
−

=
 

       (7) 

For convenience of presentation, we estimate the relative a posteriori error using 1 2 3, , ,m m mε ε ε  
and 4 ,mε , respectively, and derive the following formula (8). 

: ,
i

i m
m y

εε =
 

1,2,3,4.i =     (8) 
The specific inspection process is as follows. We use Algorithm 1 to calculate the value of 

0 0 1 1 5 5( ) ( ) ... ( )tA b tA b tA bϕ ϕ ϕ+ + +  at 1t = ± . 
When 0 0, , 1, 2,...,5i ib b e i= = = , select 2 common test matrices. The first is the Markovchains 

matrix, which is an asymmetric matrix of 11264 non-zero elements. The second matrix is a 
block-symmetric tridiagonal matrix of order 9801, which is obtained by finite difference method 
and can be generated by MATLAB commands. 

Through calculation, Algorithm 1 has a super linear convergence speed, which can achieve 
higher calculation accuracy. At the same time, the backward error estimation is more effective and 
consistent with the real trend. In some environments, these error estimates overlap with real errors. 
Therefore, the accuracy of the modified algorithm 1 is high and has certain practicality. 

4. Conclusion 
In summary, this paper introduces the related theory of exponential class matrix function, further 

constructs the block Krylov subspace, and studies the effective calculation between matrix 
exponential function and vector product. In the specific research process, the data was tested mainly 
by forward error analysis, posterior error estimation, and format correction. Finally, by optimizing 
the dimension of the Krylov subspace, the effective calculation algorithm can meet the precision 
requirements of the matrix exponential function with a minimum workload. 
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